Spaces of orders and their Turing degree spectra
نویسندگان
چکیده
We investigate computability theoretic and topological properties of spaces of orders on computable orderable groups. A left order on a group G is a linear order of the domain of G, which is left-invariant under the group operation. Right orders and bi-orders are defined similarly. In particular, we study groups for which the spaces of left orders are homeomorphic to the Cantor set, and their Turing degree spectra contain certain upper cones of degrees. Our approach unifies and extends Sikora’s investigation of orders on groups in topology [28] and Solomon’s investigation of these orders in computable algebra [31]. Furthermore, we establish that a computable free group Fn of rank n > 1 has a bi-order in every Turing degree.
منابع مشابه
Π1 classes and orderable groups
It is known that the spaces of orders on orderable computable fields can represent all Π1 classes up to Turing degree. We show that the spaces of orders on orderable computable abelian and nilpotent groups cannot represent Π1 classes in even a weak manner. Next, we consider presentations of ordered abelian groups, and we show that there is a computable ordered abelian group for which no computa...
متن کاملSpectra of highn and non-lown degrees
We survey known results on spectra of structures and on spectra of relations on computable structures. asking when the set of all highn degrees can be such a spectrum, and likewise for the set of nonlown degrees. We then repeat these questions specifically for linear orders and for relations on the computable dense linear order Q. New results include realizations of the set of nonlown Turing de...
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملPoint degree spectra of represented spaces
We introduce the point degree spectrum of a represented space as a substructure of the Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, continuous degrees, and so on. The notion of point degree spectrum creates a connection among various areas of mathematics including computability theory, descriptive set theory, infinite dimensional topology and Banach spac...
متن کاملCharacterization of projective special linear groups in dimension three by their orders and degree patterns
The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 161 شماره
صفحات -
تاریخ انتشار 2010